Ardour  9.0-pre0-427-gd2a3450e2f
Polyfit.h
Go to the documentation of this file.
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2 //---------------------------------------------------------------------------
3 
4 #ifndef PolyfitHPP
5 #define PolyfitHPP
6 //---------------------------------------------------------------------------
7 // Least-squares curve fitting class for arbitrary data types
8 /*
9 
10 { ******************************************
11  **** Scientific Subroutine Library ****
12  **** for C++ Builder ****
13  ******************************************
14 
15  The following programs were written by Allen Miller and appear in the
16  book entitled "Pascal Programs For Scientists And Engineers" which is
17  published by Sybex, 1981.
18  They were originally typed and submitted to MTPUG in Oct. 1982
19  Juergen Loewner
20  Hoher Heckenweg 3
21  D-4400 Muenster
22  They have had minor corrections and adaptations for Turbo Pascal by
23  Jeff Weiss
24  1572 Peacock Ave.
25  Sunnyvale, CA 94087.
26 
27 
28 2000 Oct 28 Updated for Delphi 4, open array parameters.
29  This allows the routine to be generalised so that it is no longer
30  hard-coded to make a specific order of best fit or work with a
31  specific number of points.
32 2001 Jan 07 Update Web site address
33 
34 Copyright © David J Taylor, Edinburgh and others listed above
35 Web site: www.satsignal.net
36 E-mail: davidtaylor@writeme.com
37 }*/
38 
40  // Modified by CLandone for VC6 Aug 2004
42 
43 #include <iostream>
44 
45 using std::vector;
46 
47 class TPolyFit
48 {
49  typedef vector<vector<double> > Matrix;
50 public:
51 
52  static double PolyFit2 (const vector<double> &x, // does the work
53  const vector<double> &y,
54  vector<double> &coef);
55 
56 
57 private:
58  TPolyFit &operator = (const TPolyFit &); // disable assignment
59  TPolyFit(); // and instantiation
60  TPolyFit(const TPolyFit&); // and copying
61 
62 
63  static void Square (const Matrix &x, // Matrix multiplication routine
64  const vector<double> &y,
65  Matrix &a, // A = transpose X times X
66  vector<double> &g, // G = Y times X
67  const int nrow, const int ncol);
68  // Forms square coefficient matrix
69 
70  static bool GaussJordan (Matrix &b, // square matrix of coefficients
71  const vector<double> &y, // constant vector
72  vector<double> &coef); // solution vector
73  // returns false if matrix singular
74 
75  static bool GaussJordan2(Matrix &b,
76  const vector<double> &y,
77  Matrix &w,
78  vector<vector<int> > &index);
79 };
80 
81 // some utility functions
82 
83 struct NSUtility
84 {
85  static void swap(double &a, double &b) {double t = a; a = b; b = t;}
86  // fills a vector with zeros.
87  static void zeroise(vector<double> &array, int n) {
88  array.clear();
89  for(int j = 0; j < n; ++j) array.push_back(0);
90  }
91  // fills a vector with zeros.
92  static void zeroise(vector<int> &array, int n) {
93  array.clear();
94  for(int j = 0; j < n; ++j) array.push_back(0);
95  }
96  // fills a (m by n) matrix with zeros.
97  static void zeroise(vector<vector<double> > &matrix, int m, int n) {
98  vector<double> zero;
99  zeroise(zero, n);
100  matrix.clear();
101  for(int j = 0; j < m; ++j) matrix.push_back(zero);
102  }
103  // fills a (m by n) matrix with zeros.
104  static void zeroise(vector<vector<int> > &matrix, int m, int n) {
105  vector<int> zero;
106  zeroise(zero, n);
107  matrix.clear();
108  for(int j = 0; j < m; ++j) matrix.push_back(zero);
109  }
110  static double sqr(const double &x) {return x * x;}
111 };
112 
113 
114 // main PolyFit routine
115 
116 double TPolyFit::PolyFit2 (const vector<double> &x,
117  const vector<double> &y,
118  vector<double> &coefs)
119 // nterms = coefs.size()
120 // npoints = x.size()
121 {
122  int i, j;
123  double xi, yi, yc, srs, sum_y, sum_y2;
124  Matrix xmatr; // Data matrix
125  Matrix a;
126  vector<double> g; // Constant vector
127  const int npoints(x.size());
128  const int nterms(coefs.size());
129  double correl_coef;
130  NSUtility::zeroise(g, nterms);
131  NSUtility::zeroise(a, nterms, nterms);
132  NSUtility::zeroise(xmatr, npoints, nterms);
133  if (nterms < 1) {
134  std::cerr << "ERROR: PolyFit called with less than one term" << std::endl;
135  return 0;
136  }
137  if(npoints < 2) {
138  std::cerr << "ERROR: PolyFit called with less than two points" << std::endl;
139  return 0;
140  }
141  if(npoints != (int)y.size()) {
142  std::cerr << "ERROR: PolyFit called with x and y of unequal size" << std::endl;
143  return 0;
144  }
145  for(i = 0; i < npoints; ++i)
146  {
147  // { setup x matrix }
148  xi = x[i];
149  xmatr[i][0] = 1.0; // { first column }
150  for(j = 1; j < nterms; ++j)
151  xmatr[i][j] = xmatr [i][j - 1] * xi;
152  }
153  Square (xmatr, y, a, g, npoints, nterms);
154  if(!GaussJordan (a, g, coefs))
155  return -1;
156  sum_y = 0.0;
157  sum_y2 = 0.0;
158  srs = 0.0;
159  for(i = 0; i < npoints; ++i)
160  {
161  yi = y[i];
162  yc = 0.0;
163  for(j = 0; j < nterms; ++j)
164  yc += coefs [j] * xmatr [i][j];
165  srs += NSUtility::sqr (yc - yi);
166  sum_y += yi;
167  sum_y2 += yi * yi;
168  }
169 
170  // If all Y values are the same, avoid dividing by zero
171  correl_coef = sum_y2 - NSUtility::sqr (sum_y) / npoints;
172  // Either return 0 or the correct value of correlation coefficient
173  if (correl_coef != 0)
174  correl_coef = srs / correl_coef;
175  if (correl_coef >= 1)
176  correl_coef = 0.0;
177  else
178  correl_coef = sqrt (1.0 - correl_coef);
179  return correl_coef;
180 }
181 
182 
183 //------------------------------------------------------------------------
184 
185 // Matrix multiplication routine
186 // A = transpose X times X
187 // G = Y times X
188 
189 // Form square coefficient matrix
190 
191 void TPolyFit::Square (const Matrix &x,
192  const vector<double> &y,
193  Matrix &a,
194  vector<double> &g,
195  const int nrow,
196  const int ncol)
197 {
198  int i, k, l;
199  for(k = 0; k < ncol; ++k)
200  {
201  for(l = 0; l < k + 1; ++l)
202  {
203  a [k][l] = 0.0;
204  for(i = 0; i < nrow; ++i)
205  {
206  a[k][l] += x[i][l] * x [i][k];
207  if(k != l)
208  a[l][k] = a[k][l];
209  }
210  }
211  g[k] = 0.0;
212  for(i = 0; i < nrow; ++i)
213  g[k] += y[i] * x[i][k];
214  }
215 }
216 //---------------------------------------------------------------------------------
217 
218 
220  const vector<double> &y,
221  vector<double> &coef)
222 //b square matrix of coefficients
223 //y constant vector
224 //coef solution vector
225 //ncol order of matrix got from b.size()
226 
227 
228 {
229 /*
230  { Gauss Jordan matrix inversion and solution }
231 
232  { B (n, n) coefficient matrix becomes inverse }
233  { Y (n) original constant vector }
234  { W (n, m) constant vector(s) become solution vector }
235  { DETERM is the determinant }
236  { ERROR = 1 if singular }
237  { INDEX (n, 3) }
238  { NV is number of constant vectors }
239 */
240 
241  int ncol(b.size());
242  int irow, icol;
243  vector<vector<int> >index;
244  Matrix w;
245 
246  NSUtility::zeroise(w, ncol, ncol);
247  NSUtility::zeroise(index, ncol, 3);
248 
249  if(!GaussJordan2(b, y, w, index))
250  return false;
251 
252  // Interchange columns
253  int m;
254  for (int i = 0; i < ncol; ++i)
255  {
256  m = ncol - i - 1;
257  if(index [m][0] != index [m][1])
258  {
259  irow = index [m][0];
260  icol = index [m][1];
261  for(int k = 0; k < ncol; ++k)
262  swap (b[k][irow], b[k][icol]);
263  }
264  }
265 
266  for(int k = 0; k < ncol; ++k)
267  {
268  if(index [k][2] != 0)
269  {
270  std::cerr << "ERROR: Error in PolyFit::GaussJordan: matrix is singular" << std::endl;
271  return false;
272  }
273  }
274 
275  for( int i = 0; i < ncol; ++i)
276  coef[i] = w[i][0];
277 
278 
279  return true;
280 } // end; { procedure GaussJordan }
281 //----------------------------------------------------------------------------------------------
282 
283 
285  const vector<double> &y,
286  Matrix &w,
287  vector<vector<int> > &index)
288 {
289  //GaussJordan2; // first half of GaussJordan
290  // actual start of gaussj
291 
292  double big, t;
293  double pivot;
294  double determ;
295  int irow = 0, icol = 0;
296  int ncol(b.size());
297  int nv = 1; // single constant vector
298  for(int i = 0; i < ncol; ++i)
299  {
300  w[i][0] = y[i]; // copy constant vector
301  index[i][2] = -1;
302  }
303  determ = 1.0;
304  for(int i = 0; i < ncol; ++i)
305  {
306  // Search for largest element
307  big = 0.0;
308  for(int j = 0; j < ncol; ++j)
309  {
310  if(index[j][2] != 0)
311  {
312  for(int k = 0; k < ncol; ++k)
313  {
314  if(index[k][2] > 0) {
315  std::cerr << "ERROR: Error in PolyFit::GaussJordan2: matrix is singular" << std::endl;
316  return false;
317  }
318 
319  if(index[k][2] < 0 && fabs(b[j][k]) > big)
320  {
321  irow = j;
322  icol = k;
323  big = fabs(b[j][k]);
324  }
325  } // { k-loop }
326  }
327  } // { j-loop }
328  index [icol][2] = index [icol][2] + 1;
329  index [i][0] = irow;
330  index [i][1] = icol;
331 
332  // Interchange rows to put pivot on diagonal
333  // GJ3
334  if(irow != icol)
335  {
336  determ = -determ;
337  for(int m = 0; m < ncol; ++m)
338  swap (b [irow][m], b[icol][m]);
339  if (nv > 0)
340  for (int m = 0; m < nv; ++m)
341  swap (w[irow][m], w[icol][m]);
342  } // end GJ3
343 
344  // divide pivot row by pivot column
345  pivot = b[icol][icol];
346  determ *= pivot;
347  b[icol][icol] = 1.0;
348 
349  for(int m = 0; m < ncol; ++m)
350  b[icol][m] /= pivot;
351  if(nv > 0)
352  for(int m = 0; m < nv; ++m)
353  w[icol][m] /= pivot;
354 
355  // Reduce nonpivot rows
356  for(int n = 0; n < ncol; ++n)
357  {
358  if(n != icol)
359  {
360  t = b[n][icol];
361  b[n][icol] = 0.0;
362  for(int m = 0; m < ncol; ++m)
363  b[n][m] -= b[icol][m] * t;
364  if(nv > 0)
365  for(int m = 0; m < nv; ++m)
366  w[n][m] -= w[icol][m] * t;
367  }
368  }
369  } // { i-loop }
370  return true;
371 }
372 
373 #endif
374 
TPolyFit(const TPolyFit &)
vector< vector< double > > Matrix
Definition: Polyfit.h:49
static bool GaussJordan(Matrix &b, const vector< double > &y, vector< double > &coef)
Definition: Polyfit.h:219
static void Square(const Matrix &x, const vector< double > &y, Matrix &a, vector< double > &g, const int nrow, const int ncol)
Definition: Polyfit.h:191
static double PolyFit2(const vector< double > &x, const vector< double > &y, vector< double > &coef)
Definition: Polyfit.h:116
static bool GaussJordan2(Matrix &b, const vector< double > &y, Matrix &w, vector< vector< int > > &index)
Definition: Polyfit.h:284
TPolyFit & operator=(const TPolyFit &)
static void zeroise(vector< double > &array, int n)
Definition: Polyfit.h:87
static void swap(double &a, double &b)
Definition: Polyfit.h:85
static void zeroise(vector< int > &array, int n)
Definition: Polyfit.h:92
static void zeroise(vector< vector< double > > &matrix, int m, int n)
Definition: Polyfit.h:97
static void zeroise(vector< vector< int > > &matrix, int m, int n)
Definition: Polyfit.h:104
static double sqr(const double &x)
Definition: Polyfit.h:110