Ardour  9.0-pre0-582-g084a23a80d
kissfft.hh
Go to the documentation of this file.
1 #ifndef KISSFFT_CLASS_HH
2 #define KISSFFT_CLASS_HH
3 #include <complex>
4 #include <vector>
5 
6 namespace kissfft_utils {
7 
8 template <typename T_scalar>
9 struct traits
10 {
11  typedef T_scalar scalar_type;
12  typedef std::complex<scalar_type> cpx_type;
13  void fill_twiddles( std::complex<T_scalar> * dst ,int nfft,bool inverse)
14  {
15  T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft;
16  for (int i=0;i<nfft;++i)
17  dst[i] = exp( std::complex<T_scalar>(0,i*phinc) );
18  }
19 
20  void prepare(
21  std::vector< std::complex<T_scalar> > & dst,
22  int nfft,bool inverse,
23  std::vector<int> & stageRadix,
24  std::vector<int> & stageRemainder )
25  {
26  _twiddles.resize(nfft);
27  fill_twiddles( &_twiddles[0],nfft,inverse);
28  dst = _twiddles;
29 
30  //factorize
31  //start factoring out 4's, then 2's, then 3,5,7,9,...
32  int n= nfft;
33  int p=4;
34  do {
35  while (n % p) {
36  switch (p) {
37  case 4: p = 2; break;
38  case 2: p = 3; break;
39  default: p += 2; break;
40  }
41  if (p*p>n)
42  p=n;// no more factors
43  }
44  n /= p;
45  stageRadix.push_back(p);
46  stageRemainder.push_back(n);
47  }while(n>1);
48  }
49  std::vector<cpx_type> _twiddles;
50 
51 
52  const cpx_type twiddle(int i) { return _twiddles[i]; }
53 };
54 
55 }
56 
57 template <typename T_Scalar,
58  typename T_traits=kissfft_utils::traits<T_Scalar>
59  >
60 class kissfft
61 {
62  public:
63  typedef T_traits traits_type;
64  typedef typename traits_type::scalar_type scalar_type;
65  typedef typename traits_type::cpx_type cpx_type;
66 
67  kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() )
68  :_nfft(nfft),_inverse(inverse),_traits(traits)
69  {
71  }
72 
73  void transform(const cpx_type * src , cpx_type * dst)
74  {
75  kf_work(0, dst, src, 1,1);
76  }
77 
78  private:
79  void kf_work( int stage,cpx_type * Fout, const cpx_type * f, size_t fstride,size_t in_stride)
80  {
81  int p = _stageRadix[stage];
82  int m = _stageRemainder[stage];
83  cpx_type * Fout_beg = Fout;
84  cpx_type * Fout_end = Fout + p*m;
85 
86  if (m==1) {
87  do{
88  *Fout = *f;
89  f += fstride*in_stride;
90  }while(++Fout != Fout_end );
91  }else{
92  do{
93  // recursive call:
94  // DFT of size m*p performed by doing
95  // p instances of smaller DFTs of size m,
96  // each one takes a decimated version of the input
97  kf_work(stage+1, Fout , f, fstride*p,in_stride);
98  f += fstride*in_stride;
99  }while( (Fout += m) != Fout_end );
100  }
101 
102  Fout=Fout_beg;
103 
104  // recombine the p smaller DFTs
105  switch (p) {
106  case 2: kf_bfly2(Fout,fstride,m); break;
107  case 3: kf_bfly3(Fout,fstride,m); break;
108  case 4: kf_bfly4(Fout,fstride,m); break;
109  case 5: kf_bfly5(Fout,fstride,m); break;
110  default: kf_bfly_generic(Fout,fstride,m,p); break;
111  }
112  }
113 
114  // these were #define macros in the original kiss_fft
115  void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;}
116  void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;}
117  void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;}
118  void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;}
119  void C_FIXDIV( cpx_type & ,int ) {} // NO-OP for float types
120  scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;}
121  scalar_type HALF_OF( const scalar_type & a) { return a*.5;}
122  void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;}
123 
124  void kf_bfly2( cpx_type * Fout, const size_t fstride, int m)
125  {
126  for (int k=0;k<m;++k) {
127  cpx_type t = Fout[m+k] * _traits.twiddle(k*fstride);
128  Fout[m+k] = Fout[k] - t;
129  Fout[k] += t;
130  }
131  }
132 
133  void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m)
134  {
135  cpx_type scratch[7];
136  int negative_if_inverse = _inverse * -2 +1;
137  for (size_t k=0;k<m;++k) {
138  scratch[0] = Fout[k+m] * _traits.twiddle(k*fstride);
139  scratch[1] = Fout[k+2*m] * _traits.twiddle(k*fstride*2);
140  scratch[2] = Fout[k+3*m] * _traits.twiddle(k*fstride*3);
141  scratch[5] = Fout[k] - scratch[1];
142 
143  Fout[k] += scratch[1];
144  scratch[3] = scratch[0] + scratch[2];
145  scratch[4] = scratch[0] - scratch[2];
146  scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
147 
148  Fout[k+2*m] = Fout[k] - scratch[3];
149  Fout[k] += scratch[3];
150  Fout[k+m] = scratch[5] + scratch[4];
151  Fout[k+3*m] = scratch[5] - scratch[4];
152  }
153  }
154 
155  void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m)
156  {
157  size_t k=m;
158  const size_t m2 = 2*m;
159  cpx_type *tw1,*tw2;
160  cpx_type scratch[5];
161  cpx_type epi3;
162  epi3 = _twiddles[fstride*m];
163 
164  tw1=tw2=&_twiddles[0];
165 
166  do{
167  C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
168 
169  C_MUL(scratch[1],Fout[m] , *tw1);
170  C_MUL(scratch[2],Fout[m2] , *tw2);
171 
172  C_ADD(scratch[3],scratch[1],scratch[2]);
173  C_SUB(scratch[0],scratch[1],scratch[2]);
174  tw1 += fstride;
175  tw2 += fstride*2;
176 
177  Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) );
178 
179  C_MULBYSCALAR( scratch[0] , epi3.imag() );
180 
181  C_ADDTO(*Fout,scratch[3]);
182 
183  Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
184 
185  C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) );
186  ++Fout;
187  }while(--k);
188  }
189 
190  void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m)
191  {
192  cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
193  size_t u;
194  cpx_type scratch[13];
195  cpx_type * twiddles = &_twiddles[0];
196  cpx_type *tw;
197  cpx_type ya,yb;
198  ya = twiddles[fstride*m];
199  yb = twiddles[fstride*2*m];
200 
201  Fout0=Fout;
202  Fout1=Fout0+m;
203  Fout2=Fout0+2*m;
204  Fout3=Fout0+3*m;
205  Fout4=Fout0+4*m;
206 
207  tw=twiddles;
208  for ( u=0; u<m; ++u ) {
209  C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
210  scratch[0] = *Fout0;
211 
212  C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
213  C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
214  C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
215  C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
216 
217  C_ADD( scratch[7],scratch[1],scratch[4]);
218  C_SUB( scratch[10],scratch[1],scratch[4]);
219  C_ADD( scratch[8],scratch[2],scratch[3]);
220  C_SUB( scratch[9],scratch[2],scratch[3]);
221 
222  C_ADDTO( *Fout0, scratch[7]);
223  C_ADDTO( *Fout0, scratch[8]);
224 
225  scratch[5] = scratch[0] + cpx_type(
226  S_MUL(scratch[7].real(),ya.real() ) + S_MUL(scratch[8].real() ,yb.real() ),
227  S_MUL(scratch[7].imag(),ya.real()) + S_MUL(scratch[8].imag(),yb.real())
228  );
229 
230  scratch[6] = cpx_type(
231  S_MUL(scratch[10].imag(),ya.imag()) + S_MUL(scratch[9].imag(),yb.imag()),
232  -S_MUL(scratch[10].real(),ya.imag()) - S_MUL(scratch[9].real(),yb.imag())
233  );
234 
235  C_SUB(*Fout1,scratch[5],scratch[6]);
236  C_ADD(*Fout4,scratch[5],scratch[6]);
237 
238  scratch[11] = scratch[0] +
239  cpx_type(
240  S_MUL(scratch[7].real(),yb.real()) + S_MUL(scratch[8].real(),ya.real()),
241  S_MUL(scratch[7].imag(),yb.real()) + S_MUL(scratch[8].imag(),ya.real())
242  );
243 
244  scratch[12] = cpx_type(
245  -S_MUL(scratch[10].imag(),yb.imag()) + S_MUL(scratch[9].imag(),ya.imag()),
246  S_MUL(scratch[10].real(),yb.imag()) - S_MUL(scratch[9].real(),ya.imag())
247  );
248 
249  C_ADD(*Fout2,scratch[11],scratch[12]);
250  C_SUB(*Fout3,scratch[11],scratch[12]);
251 
252  ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
253  }
254  }
255 
256  /* perform the butterfly for one stage of a mixed radix FFT */
258  cpx_type * Fout,
259  const size_t fstride,
260  int m,
261  int p
262  )
263  {
264  int u,k,q1,q;
265  cpx_type * twiddles = &_twiddles[0];
266  cpx_type t;
267  int Norig = _nfft;
268  cpx_type scratchbuf[p];
269 
270  for ( u=0; u<m; ++u ) {
271  k=u;
272  for ( q1=0 ; q1<p ; ++q1 ) {
273  scratchbuf[q1] = Fout[ k ];
274  C_FIXDIV(scratchbuf[q1],p);
275  k += m;
276  }
277 
278  k=u;
279  for ( q1=0 ; q1<p ; ++q1 ) {
280  int twidx=0;
281  Fout[ k ] = scratchbuf[0];
282  for (q=1;q<p;++q ) {
283  twidx += fstride * k;
284  if (twidx>=Norig) twidx-=Norig;
285  C_MUL(t,scratchbuf[q] , twiddles[twidx] );
286  C_ADDTO( Fout[ k ] ,t);
287  }
288  k += m;
289  }
290  }
291  }
292 
293  int _nfft;
294  bool _inverse;
295  std::vector<cpx_type> _twiddles;
296  std::vector<int> _stageRadix;
297  std::vector<int> _stageRemainder;
299 };
300 #endif
traits_type::scalar_type scalar_type
Definition: kissfft.hh:64
std::vector< int > _stageRemainder
Definition: kissfft.hh:297
scalar_type S_MUL(const scalar_type &a, const scalar_type &b)
Definition: kissfft.hh:120
void C_ADDTO(cpx_type &c, const cpx_type &a)
Definition: kissfft.hh:118
void C_SUB(cpx_type &c, const cpx_type &a, const cpx_type &b)
Definition: kissfft.hh:117
void C_MULBYSCALAR(cpx_type &c, const scalar_type &a)
Definition: kissfft.hh:122
void kf_work(int stage, cpx_type *Fout, const cpx_type *f, size_t fstride, size_t in_stride)
Definition: kissfft.hh:79
void C_ADD(cpx_type &c, const cpx_type &a, const cpx_type &b)
Definition: kissfft.hh:115
void kf_bfly3(cpx_type *Fout, const size_t fstride, const size_t m)
Definition: kissfft.hh:155
void kf_bfly4(cpx_type *Fout, const size_t fstride, const size_t m)
Definition: kissfft.hh:133
void kf_bfly2(cpx_type *Fout, const size_t fstride, int m)
Definition: kissfft.hh:124
std::vector< int > _stageRadix
Definition: kissfft.hh:296
kissfft(int nfft, bool inverse, const traits_type &traits=traits_type())
Definition: kissfft.hh:67
T_traits traits_type
Definition: kissfft.hh:63
int _nfft
Definition: kissfft.hh:293
std::vector< cpx_type > _twiddles
Definition: kissfft.hh:295
void kf_bfly_generic(cpx_type *Fout, const size_t fstride, int m, int p)
Definition: kissfft.hh:257
scalar_type HALF_OF(const scalar_type &a)
Definition: kissfft.hh:121
void transform(const cpx_type *src, cpx_type *dst)
Definition: kissfft.hh:73
traits_type _traits
Definition: kissfft.hh:298
void C_FIXDIV(cpx_type &, int)
Definition: kissfft.hh:119
bool _inverse
Definition: kissfft.hh:294
traits_type::cpx_type cpx_type
Definition: kissfft.hh:65
void kf_bfly5(cpx_type *Fout, const size_t fstride, const size_t m)
Definition: kissfft.hh:190
void C_MUL(cpx_type &c, const cpx_type &a, const cpx_type &b)
Definition: kissfft.hh:116
void fill_twiddles(std::complex< T_scalar > *dst, int nfft, bool inverse)
Definition: kissfft.hh:13
const cpx_type twiddle(int i)
Definition: kissfft.hh:52
void prepare(std::vector< std::complex< T_scalar > > &dst, int nfft, bool inverse, std::vector< int > &stageRadix, std::vector< int > &stageRemainder)
Definition: kissfft.hh:20
std::complex< scalar_type > cpx_type
Definition: kissfft.hh:12
T_scalar scalar_type
Definition: kissfft.hh:11
std::vector< cpx_type > _twiddles
Definition: kissfft.hh:49